Iron K band Observations of Active Galactic Nuclei

James Reeves

NASA Goddard Space Flight Center

Collaborators:-

Ken Pounds, Paul O'Brien, Kim Page, Martin Turner, Andrew King (Univ of Leicester)

Ian George, Richard Mushotzky, Jane Turner, Tahir Yaqoob (GSFC)

AGN accretion disc – the 'broad' Fe Kα line

. Hard X-rays illuminate 'cold' inner accretion disc Broad Iron Kα seen by Reflection

MCG-6-30-15 – extraction of energy from a spinning black hole?

"Narrow" Iron K lines only in NGC 4151 and NGC 5548

NGC 3783 - Compton Shoulder

*850 ks HEG exposure: deduce ~ v~0.1

* Rules out optically-thick disk or torus.
 BLR/NLR likely.

Need ~140 ks XRS to do similar science for F(2-10) = 6.1e-11 cgs

$$F(2-10)=6 \times 10^{-11} \text{ egs EW}=70 \text{ eV}$$

Shoulder peak close to the value for backscattering 6.400 keV photons.
Deviation is a measure of kT for the medium.

NGC 7314: Fe XXV & Fe XXVI
Narrow, rapidly variable, unresolved lines from an accretion disk.

He-like & H-like lines are redshifted, Fe I K line is not.

Redshift is ~1500 km/s, greater than systematic & statistical uncertainty.

Is He-like line f,i, or r? HEG cannot resolve.

Consistent redshift with H-like line if forbidden.

Highly Ionised Fe K Absorber in Mrk 766 - Evidence for Flare Ejecta?

Fe XXVI absorption only in high flux ("flaring") state

A Highly Ionised, Relativistic Outflow in PG 1211+143

XMM-Newton data reveal a large, highly ionised outflow

 $\xi \sim 10^{3.4}$ and $N_H \sim 5x10^{23}$ cm⁻² outflowing at ~ 0.1 c

Mass-loss rate $\sim 0.1 \text{ M/yr}^{-1}$

K.E. $\sim 10^{43} \text{ erg s}^{-1} (10\% \text{ L}_{x})$

Similar flows in the BAL quasars APM08279+5255 & PG1115+080 (Chartas et al. 2003)

Iron K-shell absorption in the Quasar PDS 456

Broad X-ray Absorption Features in PDS 456

XMM-Newton RGS (Reeves et al. 2003)

Derive $\xi \sim 10^3$ and $N_H \sim 10^{24}$ cm⁻² outflowing at ~ 0.15 c!

If hard X-rays driving outflow, mass-loss rate ~ 10 M/yr⁻¹

For 10% covering factor, outflow K.E. $\sim 10^{46}$ erg s⁻¹ (10% L_{bol})

Outflow geometry and driving mechanism

Flow along disk plane

Flow along BH axis?

BAL model (left) driven by radiation-pressure. Large, high-ionisation, outflows harder to drive. Need bound-free and/or Compton scattering.

Alternative is magnetic field driving. Significant energy in magnetic field in PDS456.

LEG RGS MEG HEG XRS

VELOCITY RESOLUTION — Chandra/XMN Gratings (1st order) vs. XRS FWHM resolutions— XRS: 6 eV; HEG: 0.012 A; MEG 0.023 A; HGS: 0.04 A; LEG: 0.05 A

Highest spatial resolution is needed to resolve iron K band components:-relativistic line, narrow line, ionised components and absorption lines and edges.

Calorimeter resolution needed (with Δv =100-300 km/s) at 6 keV - Astro-E2 XRS and Constellation-X

Conclusions - Observations of the iron K line

- The broad relativistic (extremal Kerr?) appears robust in MCG -6-30-15.
- Generally, the simple redshifted broad line scenario (circa ASCA) appears too simplistic.
- Ionised iron K line components are observed in several AGN (Mrk 205, Mrk 509, NGC 5506, F9, NGC 7314). Origin in an ionised disc?
- "Narrow" iron K line appears almost ubiquitous in Seyfert 1s (but not QSOs). Origin is unclear (NLR, torus, BLR, outer disc) needs higher resolution
- Highly ionised outflows detected in several (high accretion rate?) AGN, PG 1211+143, PDS 456 and Mrk 766. Also see Chartas talk.